Traffic Impact Analysis Mid I-5 Industrial Park Kelso, WA

Prepared For:

Trammell Crow Portland Development, Inc.

Prepared By:

SCJ Alliance
8730 Tallon Lane NE, Suite 200
Lacey, WA 98516
360.352.1465

July 2022

Traffic Impact Analysis

Project Information

Project:
Prepared for:

Reviewing Agency

Jurisdiction:

Project Representative

Prepared by:

Contact:

Project Reference:

Mid I-5 Industrial Park
Trammell Crow Portland Development, Inc.
Tom Nieswander
1300 SW 5th Ave., Suite 3350
Portland, OR 97201

Kelso, Washington

SCJ Alliance
8730 Tallon Lane NE, Suite 200
Lacey, WA 98516
360.352.1465
scjalliance.com
Eric Johnston, PE, Principal
Anne Sylvester, PTE, Senior Consultant
SCJ \#22-000124
Path: $\mathrm{N}: \backslash$ Projects $\backslash 0994$ Gibbs \& Olson $\backslash 22-000124$ Segale Property $\ 04$-Deliverables $\backslash 05-\mathrm{TIA} \backslash 2022-0708$ Mid I-5 Industrial Park TIA.docx

Signature

The technical material and data contained in this document were prepared under the supervision and direction of the undersigned, whose seal, as a professional engineer licensed to practice as such, is affixed below.

Prepared by Ryan Shea, PTP, Senior Transportation Planner

Approved by Eric Johnston, PE, Principal

Table of Contents

1 Introduction 2
1.1 Project Overview 2
1.2 Study Context 2
2 Project Description 4
2.1 Development Proposal 4
3 Existing Conditions Summary 6
3.1 Area Land Uses 6
3.2 Roadway Inventory 6
3.3 Traffic Volume Data 7
3.4 Crash History 10
4 Project Traffic Characteristics 11
4.1 Site-Generated Traffic Volumes 11
4.2 Site Traffic Distribution and Assignment. 12
5 Future Traffic Conditions 14
5.1 Roadway Network Improvements 14
5.2 Future Traffic Volumes 14
6 Traffic Operations Analysis 19
6.1 Methodology and Levels of Service 19
6.2 Intersection Analysis 19
6.3 Signal Warrant Analysis 23
7 Summary And Mitigation 26

List of Tables

Table 1. Existing Crash Severity By Intersection 10
Table 2. Project Trip Generation Rates 11
Table 3. Project Trip Generation 12
Table 4. Level of Service Criteria for Intersections 19
Table 5. Existing (2022) and Opening Year (2024) PM Peak Hour Intersection Level of Service 20
Table 6. Horizon Year (2029) PM Peak Hour Intersection Level of Service 21
List of Figures
Figure 1. Site Vicinity Map 2
Figure 2. Preliminary Site Plan 5
Figure 3. Existing Channelization and Intersection Control 8
Figure 4. Existing 2022 PM Peak Hour Traffic Volumes 9
Figure 5. Site-Generated PM Peak Hour Volumes 13
Figure 6. Projected 2024 PM Peak Hour Traffic Volumes Without Project 15
Figure 7. Projected 2024 PM Peak Hour Traffic Volumes With Project. 16
Figure 8. Projected 2029 PM Peak Hour Traffic Volumes Without Project 17
Figure 9. Projected 2029 PM Peak Hour Traffic Volumes With Project. 18
Figure 10. SR 432 EB Off-Ramp and 3rd Avenue Peak Hour Signal Warrant 24
Figure 11. Talley Way and Coweeman Park Drive Peak Hour Signal Warrant 24
Figure 12. Talley Way/Site Driveway and I-5/SR 432 Ramps Peak Hour Signal Warrant 25

List of Appendices

Appendix A Traffic Scoping Report
Appendix B Traffic Count Data
Appendix C Traffic Volume Calculations
Appendix D Operational Analysis Worksheets

Executive Summary

Trammell Crow Portland Development, Inc. (Trammell Crow) is proposing to construct a 1,406,885 square foot industrial facility in the southwest quadrant of the I-5/SR 432 interchange in Kelso, Washington.

The proposed project site has previously been studied as a large commercial development. As a part of that development significant offsite mitigation was identified for the I-5 and SR 432 interchange. Much of that mitigation has been constructed, including additional channelization at the Talley Way at Coweeman Park Drive and SR 432 eastbound ramps at Talley Way intersections. Traffic signal control was also identified at both intersections, and the signal mast arms have already been constructed.

This report has been prepared to provide the traffic analysis and project information for the City of Kelso and the Washington State Department of Transportation (WSDOT) in reviewing the development proposal. Based on a Traffic Scoping report prepared for this project dated May 2022 and subsequent comments received from WSDOT, we have identified the need to evaluate existing and forecasted operations at the following intersections:

- SR 432 westbound ramps at $3^{\text {rd }}$ Avenue
- SR 432 eastbound ramps at $3^{\text {rd }}$ Avenue
- Talley Way at Coweeman Park Drive
- SR 432 westbound ramps at Coweeman Park Drive
- SR 432 eastbound ramps at Talley Way
- SR 432 at Kelso Drive

Operational analysis has been prepared for existing 2022 PM peak hour conditions, as well as PM peak hour conditions for the project's opening (2024) and horizon year (2029) with and without completion of the development.

Project Summary

At full occupancy, the project is estimated to generate approximately 1,716 new trips ends during the PM peak hour. Access to the industrial facility will be via an internal roadway system that connects to a short extension of Talley Way immediately south of the SR 432 eastbound ramp terminal.

Operational Results

An intersection evaluation of the study area for the existing 2022, projected 2024 with and without the project traffic and projected 2029 with and without project was performed. With the completed traffic signal improvements at the I-5/SR 432 interchange all of the study intersections are projected to operate within the identified level of service standard with the exception of the SR 432 EB Off-Ramp at $3^{\text {rd }}$ Avenue intersection. The minor street left-turn movement currently operates at LOS E and projected to operate at LOS F after completion of the project. A peak hour traffic signal warrant was evaluated for this intersection and a traffic signal is not warranted. There is an existing unused travel lane on $3^{\text {rd }}$ Avenue, which is currently hatched for no vehicle entry. If this lane were made available for refuge such that the eastbound left-turning vehicles could use it to make a two-stage movement onto $3^{\text {rd }}$ Avenue, the intersection would operate at LOS D or better for all scenarios.

1 Introduction

1.1 Project Overview

Trammell Crow is proposing to construct a $1,406,885$ square foot industrial facility in the southwest quadrant of the I-5/SR 432 interchange in Kelso, Washington. This Traffic Impact Analysis has been prepared to document the expected traffic-related impacts for the proposed development. Figure 1 below illustrates the site vicinity and the transportation network serving the project area.

Figure 1. Site Vicinity Map

1.2 Study Context

1.2.1 Previous Project Site Development

The proposed project site has previously been studied as a large commercial development. The project was studied in 2008 and revised in 2010. The revised project included 725,000 square feet of retail
space, which was projected to generate over 50,000 daily trips and approximately 4.375 PM peak hour trips. As a part of that development significant offsite mitigation was identified for the I-5 and SR 432 interchange, which was paid for and constructed in 2010. Much of that mitigation has been constructed, including additional channelization at the Talley Way at Coweeman Park Drive and SR 432 eastbound ramps at Talley Way intersections. Traffic signal control was also identified at both intersections, and the signal mast arms have already been constructed.

1.2.2 Proposed Development

This report has been prepared to provide the traffic analysis and project information for the City of Kelso and the Washington State Department of Transportation (WSDOT) in reviewing the development proposal. A Traffic Scoping Letter was prepared for this project dated May 2022 and is provided in Appendix A. Based on the Traffic Scoping Letter and subsequent comments received from WSDOT, we have identified the need to evaluate existing and forecasted operations at the following intersections:

- SR 432 westbound ramps at $3^{\text {rd }}$ Avenue
- SR 432 eastbound ramps at $3^{\text {rd }}$ Avenue
- Talley Way at Coweeman Park Drive
- SR 432 westbound ramps at Coweeman Park Drive
- SR 432 eastbound ramps at Talley Way
- SR 432 at Kelso Drive

Operational analysis has been prepared for existing 2022 PM peak hour conditions, as well as PM peak hour conditions for the project's opening (2024) and horizon year (2029) with and without completion of the development.

2 Project Description

2.1 Development Proposal

Trammell Crow is proposing to construct a $1,406,885$ square foot industrial facility in the southwest quadrant of the I-5/SR 432 interchange in Kelso, Washington. Access to the industrial facility will be via an internal roadway system that connects to a short extension of Talley Way immediately south of the SR 432 eastbound ramp terminal. The extension of Talley Way that currently exists on the site will be removed and internal circulation will be configured as illustrated in the project site plan in Figure 2. The project has an opening year of 2024 and is expected to be constructed in a single phase.

Figure 2. Preliminary Site Plan

3 Existing Conditions Summary

3.1 Area Land Uses

The Mid I-5 Industrial Park site is currently undeveloped and is surrounded on all sides by transportation facilities or wetlands. Interstate 5 lies to the east of the property and SR 432 to the north, both of which are major transportation corridors. The BNSF rail mainline and Longview Wye lies to the west. There are existing wetlands to the south.

To the north of the immediate site vicinity along Coweeman Park Drive there is a regional park-and-ride lot, a car dealership, a tractor supply company, and various other light industrial uses. Further to the north lies the Kelso industrial corridor situated along both sides of Talley Way. The Southwest Washington Regional airport, a general aviation facility, is also located in this corridor. To the east of I-5 and south of the SR 432 interchange there is an RV dealership. There is no other development in the vicinity of the interchange due to the steep slopes and rapid changes in topography that exist.

3.2 Roadway Inventory

3.2.1 Interstate 5

Interstate 5 (I-5), which bisects the City of Kelso, is a six-lane interstate freeway providing north/south access from southern California to the Canadian border and is the primary freeway serving the west coast of the United States. Through the study area freeway has a speed limit of 70 mph . Immediately north of the project site, access to l-5 is provided through a freeway-to-freeway interchange with State Route (SR) 432. This interchange was reconstructed in 2010 and accommodates both the freeway-tofreeway connections to/from the north, south and west, but also incorporates two ramps that connect directly with Talley Way.

3.2.2 State Route (SR) 432/3 ${ }^{\text {rd }}$ Avenue

This state highway connects destinations in the Cities of Longview and Kelso to the l-5 corridor and provides critical access to the industrial corridors in both communities. Between I-5 and the $3^{\text {rd }}$ Avenue interchange, SR 432 is classified in the Metropolitan Transportation Plan and by WSDOT as an "Other Freeway/Expressway and has two travel lanes in each direction with limited access. The highway turns south at $3^{\text {rd }}$ Avenue and then west onto Industrial Way where it continues through the developed area to the west side of the City of Longview. This portion of the highway is classified as an "Other Principal Arterial, Urban". Along $3^{\text {rd }}$ Avenue, the road has two travel lanes in each direction in most locations, narrowing to a single northbound through lane at the $3^{\text {rd }}$ Avenue/SR 432 interchange. There are no bicycle or pedestrian facilities along the freeway segment of the highway or on $3^{\text {rd }}$ Avenue. The freeway portion of the highway is posted for 55 mph speeds, while $3^{\text {rd }}$ Avenue is posted for 35 mph speeds.

3.2.3 Talley Way

Talley Way is a north/south roadway that connects the SR 432 corridor to the Kelso industrial area and to the east side of the city via Colorado Street and $13^{\text {th }}$ Avenue. Through the SR 432 interchange area, Talley Way has two travel lanes in each direction, narrowing to a single lane in each direction north of the interchange. In the vicinity of the interchange there is a sidewalk/pathway and widened shoulder on
the east side of the street, and a widened shoulder with no pedestrian facilities on the west side. The street is posted for 35 mph speeds.

3.2.4 $3^{\text {rd }}$ Avenue/SR 411

North of its intersection with SR 432, $3^{\text {rd }}$ Avenue is a north/south Minor Arterial roadway that is also designated as SR 411 or the Westside Highway. This roadway connects the SR 432 industrial corridor with office and commercial destinations in the City of Longview. North of the interchange, $3^{\text {rd }}$ Avenue has a single travel lane in each direction with a continuous two-way left turn lane. There are generally no bicycle or pedestrian facilities along this corridor. The street has a posted speed limit of 35 mph .

3.2.5 Kelso Drive

Kelso Drive is a north/south Minor Arterial that runs parallel to and immediately east of I-5, connecting the east side of the City of Kelso with rural residential areas to the south. In the vicinity of the I-5/SR 432 interchange, Kelso Drive has no shoulders or separated bicycle/pedestrian facilities. The street has a posted speed limit of 35 mph .

A summary of the intersection channelization and control type for each of the study intersections is provided in Figure 3.

3.3 Traffic Volume Data

Quality Counts, a transportation data collection service, provided PM peak period turning movement counts at six intersections. The counts were conducted on May 17, 2022 between 4:00 pm and 6:00 pm for the evening peak period. The following locations were counted:

- SR 432 westbound ramps at $3^{\text {rd }}$ Avenue
- SR 432 eastbound ramps at $3^{\text {rd }}$ Avenue
- Talley Way at Coweeman Park Drive
- SR 432 westbound ramps at Coweeman Park Drive
- SR 432 eastbound ramps at Talley Way
- SR 432 at Kelso Drive

Figure 4 shows the 2022 PM peak hour traffic volumes for the study intersections. The original turning movement count diagrams are provided in Appendix B.
(

Figure 3
Existing Channelization and Intersection Control

3.4 Crash History

The Washington Department of Transportation provides crash data for study area roadways. The data was collected over the five-year span between January 1, 2017 and December 31, 2021 and reviewed for the study area intersections. The total crashes by severity are provided in Table 1.

Table 1. Existing Crash Severity By Intersection

Intersection	Fatal	Serious Injury	Minor Injury	Possible Injury	Property Damage Only	Total
SR 432 WB ramps at 3rd Avenue	0	0	2	9	13	24
SR 432 EB ramps at 3rd Avenue	0	0	0	0	6	6
Talley Way at Coweeman Park Drive	0	0	0	0	0	0
SR 432 WB ramps at Coweeman Park Drive	0	0	0	0	0	0
SR 432 EB ramps at Talley Way	0	0	0	0	1	1
SR 432 at Kelso Drive	0	0	2	4	11	17
Total Crashes	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1 3}$	$\mathbf{3 1}$	$\mathbf{4 8}$

Overall, approximately 65 percent of all the reported crashes were classified as property damage only (with no apparent injury). There were no fatal or serious injury crashes reported.

4 Project Traffic Characteristics

The project-related characteristics having the most effect on area traffic conditions are peak hour trip generation and the directional distribution of traffic volumes on the surrounding roadway network.

4.1 Site-Generated Traffic Volumes

Vehicle trip generation was estimated using the trip generation rates contained in the $11^{\text {th }}$ edition of the Trip Generation Manual by the Institute of Transportation Engineers (ITE). The land-use category HighCube Fulfillment Center Warehouse - Sort (land use code 155) was used.

4.1.1 Primary Traffic

A project such as a major industrial facility tends to attract a large amount of traffic from people making a trip specifically to this site. This traffic is known as "primary" trips and would be new to the existing roadway system.

4.1.2 Non-Primary Traffic

Some developments may also attract traffic from people already driving on area roadways. These trips are not new trips added to the local roadways (primary trips) but represent "non-primary" trips according to the following definitions:

- Pass-by trips are trips made as an intermediate stop from an origin to a primary destination (i.e., stopping to shop on the way home from work) by vehicles passing directly by the project driveway. No pass-by trips are assumed for this development.
- Diverted Trips are similar to pass-by trips, except diverted trips require a diversion from their original route onto another roadway to reach the site. These trips are not technically new trips but are new to the roadways in the immediate vicinity of a project.

To provide a conservative analysis it is assumed that all site trips will be primary trips. No pass-by trips are expected due to the location of the site at the end of Talley Way. A minor amount of diverted trips may occur but this is likely to be incidental. Therefore, the presence of diverted trip is not included in the trip analysis documented in this report.

The AM peak hour, PM peak hour, and Daily trip generation rates are presented in Table 2.
Table 2. Project Trip Generation Rates

Peak Period	Unit	Trip Rate	Enter \%	Exit \%
AM peak hour of Adjacent Street	KSF	0.87^{1}	81%	19%
PM peak hour of Adjacent Street	KSF	1.20^{1}	39%	61%
Daily	KSF	6.44^{1}	50%	50%

1. Average rate was used

KSF means 1,000 square feet.

The total trip generation expected from this project is calculated by applying the unit measure for each land use category to the appropriate trip generation rate. The trip generation for the proposed project is shown in Table $\mathbf{3}$ below.

Table 3. Project Trip Generation

Peak Period	Size	Total Trips	Enter	Exit
AM peak hour of Adjacent Street	$1,406.885$	1,224	991	233
PM peak hour of Adjacent Street	$1,406.885$	1,688	658	1,030
Daily	$1,406.885$	9,060	4,530	4,530

The complete project trip generation calculations are included in Appendix C.

4.2 Site Traffic Distribution and Assignment

The site traffic distribution and assignment showing the sum of all PM peak hour project-related vehicle trips is provided on Figure 5. The trip distribution patterns identified in this figure are based on output from the regional travel demand model that was developed and maintained by the Cowlitz-Wahkiakum Council of Governments. A select zone loading from TAZ 477 was obtained from the model which assumes that the zone will be developed to accommodate an industrial land use.

5 Future Traffic Conditions

5.1 Roadway Network Improvements

There is one pending roadway improvement project of significance in the study area. This project builds on the Talley Way road alignment and bridge improvement study conducted in 2009, and advances preliminary engineering for the preferred concept. The project would involve reconstruction of a portion of Talley Way to a three-lane cross-section between $13^{\text {th }}$ Avenue and the Coweeman River Bridge just north of the interchange with SR 432. The Coweeman River Bridge would also be replaced. The project is included in the 2022-25 WSDOT State Transportation Improvement Program. Preliminary engineering is scheduled for 2023 and 2024, with construction expected to occur I 2025.

5.2 Future Traffic Volumes

Traffic volume forecasts were prepared for PM peak hour conditions for the 2024 opening year and the 2029 planning horizon year. The future traffic volume forecast includes non-specific background traffic growth, and estimated traffic generated by the proposed Mid I-5 Industrial Park project.

For the non-specific background traffic growth, a 1.0 percent annual growth rate (non-compounded) was used. This growth rate was taken a review of traffic volume history in the vicinity of the I-5/SR 432 interchange and along SR 432 which was made available from WSDOT.

The projected 2024 year of opening PM peak hour traffic volumes without the Mid I-5 Industrial Park project are shown on Figure 6, while volumes with the project are shown on Figure 7. The projected 2029 horizon year PM peak hour traffic volumes without the Mid I-5 Industrial Park project are presented in Figure 8, while PM peak hour volumes with the Mid I-5 Industrial Park project are illustrated in Figure 9.

The traffic volume calculations for the study intersections are included in Appendix C.

Figure 6
Projected 2024 PM Peak Hour
Traffic Volumes Without Project

Projected 2024 PM Peak Hour
Traffic Volumes With Project

Figure 8
Projected 2029 PM Peak Hour
Traffic Volumes Without Project

Projected 2029 PM Peak Hour
Traffic Volumes With Project

6 Traffic Operations Analysis

Traffic analyses were conducted to identify any deficiencies within the study area for the PM peak hour in the 2022 base year, the 2023 project opening year, and the 2029 horizon year.

6.1 Methodology and Levels of Service

The acknowledged source for determining overall capacity for arterial segments and independent intersections is the current edition of the Highway Capacity Manual (HCM) published by the Transportation Research Board (TRB).

Intersection analysis was performed using the Synchro software package (Version 11) for signalized or stop-controlled intersections. The Sidra software package (Version 9.2) was used to evaluate roundabout intersections. These software packages implement the methods of the $6^{\text {th }}$ Edition HCM. Analysis conducted using these software programs was consistent the relevant WSDOT protocols.

Operations analysis results are described in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a street or highway during a specific time interval. LOS ranges from A (very little delay) to F (long delays and congestion).

For intersections under minor street stop-control, the LOS of the most difficult movement (typically the minor street left-turn) represents the intersection Level of Service for purposes of assessing potential impacts. For traffic signals, the intersection average delay is used to assess potential impacts. Table 4 shows the Level of Service criteria for stop- or roundabout-controlled intersections and signalized intersections.

Table 4. Level of Service Criteria for Intersections

Level of Service	Signalized Intersection Average Control Delay (seconds/vehicle)	Stop-Controlled or Roundabout Intersection Average Control Delay (seconds/vehicle)
A	≤ 10	≤ 10
B	$>10-20$	$>10-15$
C	$>20-35$	$>15-25$
D	$>35-55$	$>25-35$
E	$>55-80$	$>35-50$
F	>80	>50

Based on information from the WSDOT Geospatial Open Data Portal, Level of Service (LOS) D was identified as the preferred standard for the roadways and intersections in the study area. This is supported by the finding in the Cowlitz-Wahkiakum Council of Governments (CWCOGs) Metropolitan Transportation Plan which defines "recurring congestion" as LOS E or F.

6.2 Intersection Analysis

Based on the existing and forecasted volumes illustrated in previous graphics, traffic operations analysis was conducted at the six study area intersections. Analysis was conducted for the following scenarios:

- Existing 2022 traffic volumes
- Projected 2024 opening year traffic volumes with and without the Mid I-5 Industrial Park project
- Projected 2029 horizon year traffic volumes with and without the Mid I-5 Industrial Park project

The operational analysis results of the study intersections for the PM peak hour are provided in Table 5 for existing 2022 and opening year 2024 conditions. Table 6 shows PM peak hour analysis results for the 2029 horizon year. The LOS analysis worksheets are included in Appendix D. A discussion of existing and expected future year operations at each intersection is presented following the tables.

Table 5. Existing (2022) and Opening Year (2024) PM Peak Hour Intersection Level of Service

Intersection		Control Type	LOS Standard	Base Year 2022		Projected 2024				
		Without Project				With Project				
		LOS (delay)		Worst V/C Ratio	$\begin{gathered} \text { LOS } \\ \text { (delay) } \end{gathered}$	Worst V/C Ratio	LOS (delay)	Worst V/C Ratio		
1	SR 432 WB ramps at 3rd Avenue		Signal	D^{1}	B (14.4)	0.70	B (14.6)	0.70	B (15.9)	0.74
2	SR 432 EB ramps at 3rd Avenue		TWSC²	D^{1}	E (44.4)	0.46	E (47.0)	0.48	F (62.7)	0.57
3	Talley Way at Coweeman Park Drive	TWSC ${ }^{2}$	D	C (20.1)	0.22	C (20.7)	0.23	-	-	
			D^{1}	--	--	--	--	A (8.2)	0.63	
4	SR 432 WB ramps at Coweeman Park Drive ${ }^{4}$	TWSC ${ }^{2}$	D^{1}	A (5.9)	N/A	A (5.4)	N/A	B (11.7)	N/A	
5	SR 432 EB ramps at Talley Way	No Control	D^{1}	N/A	N/A	N/A	N/A	--	--	
		Signal	D^{1}	--	--	--	--	B (13.6)	0.82	
6	SR 432 at Kelso Drive	RBT ${ }^{3}$	D^{1}	A (5.8)	0.26	A (5.8)	0.26	A (7.5)	0.55	

1. WSDOT standard, source Geospatial Open Data Portal
2. Two-Way Stop-Control
3. Roundabout
4. SimTraffic LOS Result

Table 6. Horizon Year (2029) PM Peak Hour Intersection Level of Service

Intersection		Control Type	LOS Standard	Projected 2029				
		Without Project		With Project				
		$\begin{aligned} & \text { LOS } \\ & \text { (delay) } \end{aligned}$		Worst V/C Ratio	LOS (delay)	Worst V/C Ratio		
1	SR 432 WB ramps at 3rd Avenue		Signal	D^{1}	B (14.9)	0.71	B (16.4)	0.75
2	SR 432 EB ramps at 3rd Avenue		TWSC ${ }^{2}$	D^{1}	$F(60.5)$	0.58	F (83.8)	0.68
3	Talley Way at Coweeman Park Drive	TWSC ${ }^{2}$	D^{1}	C (22.1)	0.26	--	--	
		Signal	D^{1}	--	--	A (8.3)	0.63	
4	SR 432 WB ramps at Coweeman Park Drive ${ }^{4}$	TWSC ${ }^{2}$	D^{1}	A (6.1)	N/A	B (13.1)	N/A	
5	SR 432 EB ramps at Talley Way	No Control	D^{1}	N/A	N/A	--	--	
		Signal	D^{1}	--	--	B (14.2)	0.82	
6	SR 432 at Kelso Drive	$R B T^{3}$	D^{1}	A (5.9)	0.28	A (7.5)	0.56	

1. WSDOT standard, source Geospatial Open Data Portal
2. Two-Way Stop-Control
3. Roundabout
4. SimTraffic LOS Result

6.2.1 SR 432 Westbound Off-Ramp/Tennant Way Frontage at $3^{\text {rd }}$ Avenue

This is a four-legged intersection which currently operates under traffic signal-control. Left turn lanes are provided in the west, north and east directions. Immediately west of the intersection the westbound off-ramp from SR 432 becomes the Tennant Way Frontage Road which provides local access to $7^{\text {th }}$ Avenue and a business/residential area. No sidewalks, crosswalks or other pedestrian facilities are provided in the vicinity of the intersection.

In the 2022 PM peak hour, the intersection operates at LOS B with 14.4 seconds of average delay per vehicle. For the 2024 opening year without the Mid I-5 Industrial Park project, the intersection is projected to operate at LOS B, with 14.6 seconds of average delay. With the addition of project traffic, the intersection is projected to remain at LOS B, with 15.9 seconds of average delay.

In the 2029 horizon year, the intersection is expected to operate at LOS B with 14.9 seconds of average delay without the project, and remain at LOS B with 16.4 seconds of delay with the project.

6.2.2 SR 432 Eastbound Ramps at $3^{\text {rd }}$ Avenue

The off-ramp from eastbound SR 432 is stop sign-controlled at the intersection with $3^{\text {rd }}$ Avenue. A single lane is provided which widens slightly at the intersection to accommodate a limited number of right turn vehicles. An eastbound on-ramp is provided for traffic heading south on $3^{\text {rd }}$ Avenue which is adjacent to the off-ramp. Access to eastbound SR 432 from northbound $3^{\text {rd }}$ Avenue is provided by a dedicated right turn slip lane. Only a single northbound through lane is provided at this point as opposed to the two southbound lanes.

In the 2022 PM peak hour, the stop-controlled intersection operates at LOS E with 44.4 seconds of average delay per vehicle for the eastbound left-turn movement. For the 2024 opening year without the Mid I-5 Industrial Park project, the intersection is projected to operate at LOS E with 47.0 seconds of average delay for the worst movement. With the addition of project traffic, the intersection is projected to operate at LOS F , with 62.7 seconds of average delay.

In the 2029 horizon year, the intersection is expected to operate at LOS F with 60.5 seconds of average delay without the project, and at LOS F with 83.8 seconds of delay with the project.

3rd Avenue currently has four lanes of roadway width north of the eastbound ramps and through the SR 432 interchange with two southbound lanes, one northbound lane, and the fourth lane a hatched-out space that converts to a northbound left-turn lane at the SR 432 Westbound Off-Ramp/Tennant Way Frontage at 3rd Avenue intersection. However, this lane could be made accessible as a refuge space for the eastbound left-turn movement at the SR 432 eastbound off-ramp to make a two-stage left-turn movement onto $3^{\text {rd }}$ Avenue. With that restriping implemented, the intersection would improve to LOS D or better for all volume scenarios.

6.2.3 Talley Way at Coweeman Park Drive

This is a tee-intersection which currently operates under stop sign-control on Coweeman Park Drive and provides a crosswalk on the east leg where sidewalks or a pedestrian pathway currently exist. When the intersection was reconstructed in 2010, it was anticipated that a major commercial development would be built on the site currently proposed for the Mid I-5 Industrial Park. Accordingly, the intersection was built to include two westbound left turn lanes to channel traffic from westbound SR 432/I-5 to the site (one of which is currently closed pending the addition of traffic from future project area development). Two receiving lanes are available on Talley Way to carry traffic south towards the project site. The intersection also includes a single westbound right turn lane, and single northbound through and right turn lanes. Traffic signal poles and mast arms have been constructed at this intersection but no signal heads or other electrical equipment is currently in place. It is expected that these will be installed in the future as traffic volumes warrant. The intersection analysis assumes this intersection will operate under traffic signal control for the 2024 and 2029 with project volume scenarios

In the 2022 PM peak hour, the intersection operates at LOS C with 20.1 seconds of average delay. For the 2024 opening year without the Mid I-5 Industrial Park project, the intersection is projected to operate at LOS C, with 20.7 seconds of average delay. With the addition of project traffic and traffic signal control, the intersection is projected to operate at LOS A, with 8.2 seconds of average delay.

In the 2029 horizon year, the intersection is expected to operate at LOS C with 22.1 seconds of average delay without the project, and at LOS A with 8.3 seconds of delay with the project and traffic signal control.

6.2.4 SR 432 Westbound Ramps at Coweeman Park Drive

This is a tee intersection that currently operates under stop sign- control for the east/west movements on Coweeman Park Drive. The SR 432 westbound off-ramp is a free-flowing movement. There is a sidewalk along the north side of this street but no crosswalks.

In the 2022 PM peak hour, the intersection operates at LOS A with 5.9 seconds of average delay. For the 2024 opening year without the Mid I-5 Industrial Park project, the intersection is projected to operate at

LOS A, with 5.4 seconds of average delay. With the addition of project traffic, the intersection is projected to remain at LOS B, with 11.7 seconds of average delay.

In the 2029 horizon year, the intersection is expected to operate at LOS A with 6.1 seconds of average delay without the project, and at LOS B with 13.1 seconds of delay with the project.

6.2.5 SR 432 Eastbound Ramps at Talley Way

This intersection was also designed and built as part of the 2010 reconstruction of the I-5/SR 432 interchange. The intersection has two westbound left turn lanes to channel traffic from eastbound SR 432 to the project site. A single westbound right turn lane is also provided. Two travel lanes are provided in the southbound direction heading towards the project site. However, since Talley Way is currently closed to the south of this intersection and no on-site development has occurred, the southbound lanes function as a curved roadway leading to northbound and southbound $\mathrm{I}-5$. There is currently no traffic control at this intersection.

With the addition of project traffic, the intersection will be modified to operate with three approach legs. Two southbound through lanes will be provided into the site as will two westbound left turn lanes. Two northbound lanes have been assumed, along with traffic signal control. In the 2024 opening year PM peak hour, the intersection is projected to operate at LOS B with 13.6 seconds of average delay. In the 2029 horizon year, the intersection is expected to operate at LOS B with 14.2 seconds of average delay

6.2.6 SR 432 at Kelso Drive

This is a four-legged roundabout intersection that serves off-ramp traffic from l-5 northbound, connecting the freeway to Kelso Drive. As of 2022, this intersection currently operates at LOS A with 5.8 seconds of average delay. For the 2024 opening year without the Mid I-5 Industrial Park project, the intersection is projected to remain at LOS A, with 5.8 seconds of average delay. With the addition of project traffic, the intersection is projected to remain at LOS A, with 7.5 seconds of average delay.

In the 2029 horizon year, the intersection is expected to operate at LOS A with 5.9 seconds of average delay without the project, and at LOS A with 7.5 seconds of delay with the project.

6.3 Signal Warrant Analysis

Due to the operational performance of the SR 432 EB Off-Ramp at $3^{\text {rd }}$ Avenue intersection, a traffic signal warrant was prepared for the PM peak hour to determine if traffic signal control is appropriate. Given the existing traffic signal infrastructure that was built for the previous planned commercial development at the intersections of SR 432 EB Off-Ramp at 3 ${ }^{\text {rd }}$ Avenue, Talley Way at Coweeman Park Drive, and Talley Way/Site Driveway at I-5/SR 432 Ramps, traffic signal warrant analysis were completed to verify that upon completion of the proposed project they are warranted. The peak hour warrants results for each intersection are described below.

6.3.1 SR 432 EB Off-Ramp at $3^{\text {rd }}$ Avenue Peak Hour Signal Warrant

The major street volume is the sum of northbound and southbound approaches on $3^{\text {rd }}$ Avenue which provide two travel lanes and the minor street volume is the eastbound approach on SR 432 Off-Ramp, which provides a single lane. The intersection does not meet the volume warrant for the 2024 or 2029 horizon years. The peak hour warrant is provided in Figure 10.

Figure 10. SR 432 EB Off-Ramp and 3rd Avenue Peak Hour Signal Warrant

Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

6.3.2 Talley Way at Coweeman Park Drive Peak Hour Signal Warrant

The major street volume is the sum of northbound and southbound approaches on Talley Way which provide two travel lanes and the minor street volume is the westbound approach on Coweeman Park Drive, which also provides two or more travel lanes. The intersection meets the volume warrant for both the 2024 and 2029 horizon years. The peak hour warrant is provided in Figure 11.

Figure 11. Talley Way and Coweeman Park Drive Peak Hour Signal Warrant
Figure 4C-3. Warrant 3, Peak Hour

6.3.3 Talley Way/Site Driveway at I-5/SR 432 Ramps Peak Hour Signal Warrant

 The major street volume is the sum of northbound and southbound approaches on Talley Way which provide two or more travel lanes and the minor street volume is the westbound approach on I-5/SR 432 Ramps, which also provides two or more travel lanes. The intersection meets the volume warrant for both the 2024 and 2029 horizon years. The peak hour warrant is provided in Figure 12.Figure 12. Talley Way/Site Driveway and I-5/SR 432 Ramps Peak Hour Signal Warrant
Figure 4C-3. Warrant 3, Peak Hour

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

7 Summary And Mitigation

Trammell Crow is proposing to construct a $1,406,885$ square foot industrial facility in the southwest quadrant of the I-5/SR 432 interchange in Kelso, Washington. Access to the industrial facility will be via an internal roadway system that connects to a short extension of Talley Way immediately south of the SR 432 eastbound ramp terminal. The extension of Talley Way that currently exists on the site will be removed and internal circulation will be configured as illustrated in the project site plan.

At full occupancy, the project is estimated to generate approximately 1,688 new trips ends during the PM peak hour. This report has been prepared to provide the traffic analysis and project-information for the City of Kelso and the Washington State Department of Transportation (WSDOT) to use in the environmental review of the project.

An intersection evaluation of the study area for the existing 2022, projected 2024 with and without the project traffic and projected 2029 with and without project was performed. With the completed traffic signal improvements at the I-5/SR 432 interchange all of the study intersections are projected to operate within the identified level of service standard with the exception of the SR 432 EB Off-Ramp at $3^{\text {rd }}$ Avenue intersection. The minor street left-turn movement currently operates at LOS E and projected to operate at LOS F after completion of the project. A peak hour traffic signal warrant was evaluated for this intersection and a traffic signal is not warranted. There is an existing unused travel lane on $3^{\text {rd }}$ Avenue, which is currently hatched for no vehicle entry. If this lane were made available for refuge such that the eastbound left-turning vehicles could use it to make a two-stage movement onto $3^{\text {rd }}$ Avenue, the intersection would operate at LOS D or better for all scenarios. This intersection should be monitored and, as needed, this restriping should be considered to better accommodate the existing eastbound left-turn movement.

Appendix A
Traffic Scoping Letter

SCJ Alliance

MEMORANDUM

TO:
FROM:
DATE:
PROJECT:
SUBJECT:

Tom Nieswander, Trammell Crow Company
Anne Sylvester, PTE, Senior Consultant
May 5, 2022
Kelso-Segale Development (SCJ \# 22-000124)
Traffic Scoping Letter

Introduction

Trammell Crow is proposing to construct a 1,429,611 square foot warehouse in the southwest quadrant of the I-5/SR 432 interchange in Kelso, Washington. This Traffic Scoping Report has been prepared to document the expected trip generation and distribution for the proposed development. The site vicinity is shown below.

Figure 1. Project Vicinity

Project Description

The proposed project will consist of a warehouse facility estimated to include one large building or several smaller buildings totaling $1,429,611$ square feet. The site is currently vacant and is served by the SR 432/Talley Way interchange and a roadway built through the site that was originally intended to serve a large retail commercial establishment proposed for construction in 2010. It is expected that the site will be developed in a single phase to be opened in early 2024. The existing roadway on the site will be removed and replaced with a perimeter roadway system. A preliminary site plan for the project is attached to the report.

Access to the project will be provided by an internal, private circulation system which will join Talley Way east of the eastbound ramp termini intersection with SR 432. The east and westbound ramp termini intersections provide regional access to the project site from both SR 432 and I-5.

Project Trip Generation

Vehicle trip generation was estimated using the trip generation rates contained in the $11^{\text {th }}$ edition of the Trip Generation Manual by the Institute of Transportation Engineers (ITE). The land-use category HighCube Fulfillment Center Warehouse - Sort (land use code 155) was used.

Primary Traffic

A project such as a major warehouse facility tends to attract a large amount of traffic from people making a trip specifically to this site. This traffic is known as "primary" trips and would be new to the existing roadway system.

Non-Primary Traffic

Some developments may also attract traffic from people already driving on area roadways. These trips are not new trips added to the local roadways (primary trips) but represent "non-primary" trips according to the following definitions:

Pass-by trips are trips made as an intermediate stop from an origin to a primary destination (i.e., stopping to shop on the way home from work) by vehicles passing directly by the project driveway. No pass-by trips are assumed for this development.

Diverted Trips are similar to pass-by trips, except diverted trips require a diversion from their original route onto another roadway to reach the site. These trips are not technically new trips but are new to the roadways in the immediate vicinity of a project.

To provide a conservative analysis it is assumed that all site trips will be primary trips. No pass-by trips are expected due to the location of the site at the end of Talley Way. A minor amount of diverted trips may occur but this is likely to be incidental. Therefore, the presence of diverted trip is not included in the trip analysis documented in this report.

The AM peak hour, PM peak hour, and Daily trip generation rates are presented in Table 1.

Table 1. Project Trip Generation Rates

Peak Period	Unit	Trip Rate	Enter \%	Exit \%
AM peak hour of Adjacent Street	KSF	0.87^{1}	81%	19%
PM peak hour of Adjacent Street	KSF	1.20^{1}	39%	61%
Daily	KSF	6.44^{1}	50%	50%

1. Average rate was used

KSF means 1,000 square feet.
The total trip generation expected from this project is calculated by applying the unit measure for each land use category to the appropriate trip generation rate. The trip generation for the proposed project is shown in Table $\mathbf{2}$ below.

Table 2. Project Trip Generation

Peak Period	Size	Total Trips	Enter	Exit
AM peak hour of Adjacent Street	$1,429.61$	1,244	1,008	236
PM peak hour of Adjacent Street	$1,429.61$	1,716	669	1,047
Daily	$1,429.61$	9,208	4,604	4,604

Site Traffic Distribution and Assignment

The site traffic distribution and assignment showing the sum of all PM peak hour vehicle trips is provided on Figure 2. The trip distribution patterns identified in this figure are based on output from the regional travel demand model that was developed and maintained by the Cowlitz-Wahkiakum Council of Governments. A select zone loading from TAZ 477 was obtained from the model which assumes that the zone will be developed to accommodate an industrial land use.

A graphic showing the trip distribution percentages and assigned trips is attached to this report as Figure 2.

Proposed Analysis Parameters

Based on correspondence with Washington Department of Transportation and the City of Kelso, we propose providing analysis of the following intersections for the PM peak hour conditions as part of a Traffic Impact Analysis study:

- SR 432 eastbound ramps at Talley Way
- SR 432 westbound ramps at Coweeman Park Drive
- Talley Way at Coweeman Park Drive
- SR 432 at Kelso Drive
- SR 432 eastbound ramps at $3^{\text {rd }}$ Avenue
- Talley Way at Site Driveway

The analysis would be prepared for existing (2022), forecasted year of opening (2024) and forecasted year of opening plus five (2029) conditions with and without project completion. The analysis would include evaluation of intersection level of service and queuing and would identify turn lane and/or traffic control requirements.

Thank you for reviewing the enclosed materials. We have prepared this information for your review in anticipation of a traffic scoping discussion to finalize the requirements of a Traffic Impact Analysis for the development.

If you have any questions or comments about the enclosed information, please contact me at (360) 3521465, Ext. 140.

Respectfully,
SCJ Alliance

Anne Sylvester, PTE
Senior Consultant

Enclosures: Preliminary Site Plan
Figure 2
CWCOG Travel Demand Model Output

[^0]

BUILDING AREA 1,429,610 S.F.

Tabulation

Note: This is a conceptual plan. It is based on prelim inary information which is not fully verified and may be incomplete. It is meant as a comparative ining alternate deve 1 strategies and any 4 indicated re subiect to revision as more reliable information becomes available.

Conceptual Site Plan
Interstate 5 and Talley Way

Figure 2
Site-Generated Traffic Volumes PM Peak Hour

Assumes 725 Light Industrial Employees in TAZ (no other employees or residential)

Appendix B
 Traffic Count Data

Comments:

Comments:

Comments:

Comments:

Appendix C

Traffic Volume Worksheets

Mid I-5 Industrial Park

Trip Generation

PM Peak Hour Trip Generation										
Site Plan Description	LUC	ITE Description	Variable	Value	Trip Rate	Distribution		Total Trips		
						In	Out	In	Out	Total
Industrial Facililty	155	High Cube Fulfillment Center Warehouse - Sort	KSF	1406.885	1.20	39\%	61\%	658	1,030	1,688
Project Total										

AM Peak Hour Trip Generation										
Site Plan Description	LUC	ITE Description	Variable	Value	Trip Rate	Distribution		Total Trips		
						In	Out	In	Out	Total
Industrial Facililty	155	High Cube Fulfillment Center Warehouse - Sort	KSF	1406.885	0.87	81\%	19\%	991	233	1,224
Project Total										

Daily Trip Generation										
Site Plan Description	LUC	ITE Description	Variable	Value	Trip Rate	Distribution		Total Trips		
						In	Out	In	Out	Total
Industrial Facililty	155	High Cube Fulfillment Center Warehouse - Sort	KSF	1406.885	6.44	50\%	50\%	4,530	4,530	9,060
Project Total										

SCJ ALLIANCE CONSULTING SERVICES

Mid I-5 Industrial Park

PM Peak Hour Volumes
Growth Rate: 1\%

Mid I-5 Industrial Park

SCJ ALLIANCE CONSULTING SERVICES

PM Peak Hour Volumes
Growth Rate: 1%

Appendix D
Operational Analysis Worksheets

	$\stackrel{ }{*}$			\downarrow			4	4		\checkmark	$\frac{1}{7}$	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%		「	\% ${ }^{1 / 1}$	\uparrow		\%	\uparrow			中 ${ }_{\text {d }}$	
Traffic Volume (vph)	5	0	180	455	15	90	50	305	0	0	345	55
Future Volume (vph)	5	0	180	455	15	90	50	305	0	0	345	55
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0		75	550		625	275		0	0		0
Storage Lanes	1		1	2		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		318			873			684			482	
Travel Time (s)		7.2			19.8			15.5			11.0	
Turn Type	Prot		Perm	Prot	NA		Prot	NA			NA	
Protected Phases	5			1	6		3	8			4	
Permitted Phases			5									
Detector Phase	5		5	1	6		3	8			4	
Switch Phase												
Minimum Initial (s)	5.0		5.0	7.0	5.0		5.0	5.0			5.0	
Minimum Split (s)	10.0		10.0	13.0	11.0		10.5	10.5			10.5	
Total Split (s)	10.0		10.0	24.0	14.0		11.0	26.0			15.0	
Total Split (\%)	20.0\%		20.0\%	48.0\%	28.0\%		22.0\%	52.0\%			30.0\%	
Maximum Green (s)	5.0		5.0	18.0	8.0		5.5	20.5			9.5	
Yellow Time (s)	3.0		3.0	4.0	4.0		3.5	3.5			3.5	
All-Red Time (s)	2.0		2.0	2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	5.0		5.0	6.0	6.0		5.5	5.5			5.5	
Lead/Lag	Lead		Lead		Lag		Lead				Lag	
Lead-Lag Optimize?	Yes		Yes		Yes		Yes				Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0		3.0	3.0			3.0	
Recall Mode	None		None	None	None		None	Min			Min	
Intersection Summary												
Area Type: Other												
Cycle Length: 50												
Actuated Cycle Length: 39.9												
Natural Cycle: 55												
Control Type: Actuate	coordinated											

Splits and Phases: 1: 3rd Ave \& Tennant Way/SR 432 WB Off Ramp

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％		「	${ }^{7}$	$\hat{\square}$		${ }^{4}$	个			性	
Traffic Volume（veh／h）	5	0	180	455	15	90	50	305	0	0	345	55
Future Volume（veh／h）	5	0	180	455	15	90	50	305	0	0	345	55
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1559	0	1750	1600	1750	1695	1723	1695	0	0	1695	1668
Adj Flow Rate，veh／h	8	0	6	517	17	102	57	347	0	0	392	62
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh，\％	14	0	0	11	0	4	2	4	0	0	4	6
Cap，veh／h	12	0	0	743	29	175	98	699	0	0	569	89
Arrive On Green	0.01	0.00	0.00	0.25	0.13	0.13	0.06	0.41	0.00	0.00	0.20	0.20
Sat Flow，veh／h	1485	6		2956	217	1300	1641	1695	0	0	2874	438
Grp Volume（v），veh／h		47.1		517	0	119	57	347	0	0	225	229
Grp Sat Flow（s），veh／h／n	1485	D		1478	0	1516	1641	1695	0	0	1611	1617
Q Serve（g＿s），s	0.1			5.9	0.0	2.7	1.3	5.6	0.0	0.0	4.8	4.9
Cycle Q Clear（g＿c），s	0.1			5.9	0.0	2.7	1.3	5.6	0.0	0.0	4.8	4.9
Prop In Lane	1.00			1.00		0.86	1.00		0.00	0.00		0.27
Lane Grp Cap（c），veh／h	12			743	0	204	98	699	0	0	329	330
V／C Ratio（X）	0.50			0.70	0.00	0.58	0.58	0.50	0.00	0.00	0.68	0.69
Avail Cap（c＿a），veh／h	200			1435	0	327	243	937	0	0	413	414
HCM Platoon Ratio	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00			1.00	0.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00
Uniform Delay（d），s／veh	18.3			12.6	0.0	15.1	17.0	8.1	0.0	0.0	13.7	13.7
Incr Delay（d2），s／veh	28.8			1.2	0.0	2.6	5.3	0.5	0.0	0.0	3.3	3.6
Initial Q Delay（d3），s／veh	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	0.1			1.6	0.0	0.9	0.5	1.5	0.0	0.0	1.7	1.7
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	47.1			13.8	0.0	17.7	22.3	8.6	0.0	0.0	17.0	17.3
LnGrp LOS	D			B	A	B	C	A	A	A	B	B
Approach Vol，veh／h					636			404			454	
Approach Delay，s／veh					14.5			10.5			17.1	
Approach LOS					B			B			B	

Timer－Assigned Phs	1	3	4	5	6	8
Phs Duration（G＋Y＋Rc），s	15.3	7.7	13.1	5.3	11.0	20.8
Change Period（Y＋Rc），s	6.0	5.5	5.5	5.0	6.0	5.5
Max Green Setting（Gmax），s	18.0	5.5	9.5	5.0	8.0	20.5
Max Q Clear Time（g＿c＋11），s	7.9	3.3	6.9	2.1	4.7	7.6
Green Ext Time（p＿c），s	1.5	0.0	0.7	0.0	0.2	1.7

Intersection Summary

HCM 6th Ctrl Delay	14.4
HCM 6th LOS	B

Intersection						
Int Delay, s/veh	2.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	\mathbf{r}			个	个	
Traffic Vol, veh/h	55	10	0	300	755	225
Future Vol, veh/h	55	10	0	300	755	225
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	0	0	4	8	3
Mvmt Flow	65	12	0	353	888	265

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	1374	577	-	0	-	0
\quad Stage 1	1021	-	-	-	-	-
\quad Stage 2	353	-	-	-	-	-
Critical Hdwy	6.63	6.9	-	-	-	-
Critical Hdwy Stg 1	5.83	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy	3.519	3.3	-	-	-	-
Pot Cap-1 Maneuver	148	465	0	-	-	-
\quad Stage 1	309	-	0	-	-	-
Stage 2	710	-	0	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	148	465	-	-	-	-
Mov Cap-2 Maneuver	148	-	-	-	-	-
Stage 1	309	-	-	-	-	-
Stage 2	710	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	44.4	0	0

HCM LOS E

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	-	165	-

Intersection						
Int Delay, s/veh	5.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	\mathbf{r}	$\mathbf{4}$	$\mathbf{7}$		$\mathbf{- 1 4}$
Traffic Vol, veh/h	55	140	135	25	185	175
Future Vol, veh/h	55	140	135	25	185	175
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	0	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, \%	5	32	18	0	9	4
Mvmt Flow	66	169	163	30	223	211

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	715	163	0	0	193	0	
Stage 1	163	-	-	-	-	-	
Stage 2	552	-	-	-	-	-	
Critical Hdwy	6.675	6.68	-	-	4.235	-	
Critical Hdwy Stg 1	5.475	-	-	-	-	-	
Critical Hdwy Stg 2	5.875	-	-	-	-	-	
Follow-up Hdwy	3.5475	3.604	-		2.2855	-	
Pot Cap-1 Maneuver	376	800	-	-	1334	-	
Stage 1	857	-	-	-	-	-	
Stage 2	534	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	305	800	-	-	1334	-	
Mov Cap-2 Maneuver	305	-	-	-	-	-	
Stage 1	857	-	-	-	-	-	
Stage 2	433	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	13.4		0		4.4		
HCM LOS	B						
Minor Lane/Major Mvmt		NBT	NBRWBLn1WBLn2			SBL	SBT
Capacity (veh/h)		-	-	305	800	1334	-
HCM Lane V/C Ratio		-	-	0.217	0.211	0.167	-
HCM Control Delay (s)		-	-	20.1	10.7	8.2	0.3
HCM Lane LOS		-	-	C	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.8	0.8	0.6	-

4: I-5/SR 432 Ramps \& Coweeman Park Dr Performance by movement

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Denied Del/Veh (s)	0.1	0.0	4.0	0.2	0.2	3.8	0.5
Total Del/Veh (s)	4.5	1.5	4.7	5.9	0.3	0.6	2.1

MOVEMENT SUMMARY

\forall Site: 6 [Existing 2022 (Site Folder: General)]

I-5 NB Ramps/SR 432 Ramps at Old Pacific Hwy
PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$		$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$	$\begin{array}{r} \text { DEM } \\ \text { FLC } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{gathered} \text { CK OF } \\ \text { UE } \\ \text { Dist] } \\ \mathrm{ft} \end{gathered}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: NB Old Pacific Hwy													
8 T1	165	1.0	179	1.0	0.234	4.3	LOS A	1.2	30.5	0.29	0.45	0.29	37.2
18 R2	115	3.0	125	3.0	0.234	4.4	LOS A	1.2	30.5	0.29	0.45	0.29	36.0
Approach	280	1.8	304	1.8	0.234	4.4	LOS A	1.2	30.5	0.29	0.45	0.29	36.7
East: WB Kelso Dr													
1 L2	110	1.0	120	1.0	0.126	10.4	LOS B	0.6	15.1	0.32	0.62	0.32	35.0
16 R2	35	0.0	38	0.0	0.126	4.5	LOS A	0.6	15.1	0.32	0.62	0.32	33.9
Approach	145	0.8	158	0.8	0.126	9.0	LOS A	0.6	15.1	0.32	0.62	0.32	34.7
North: SB SR 432 Ramps													
7 L2	65	2.0	71	2.0	0.259	10.3	LOS B	1.4	35.8	0.30	0.48	0.30	36.6
$4 \quad \mathrm{~T} 1$	245	2.0	266	2.0	0.259	4.3	LOS A	1.4	35.8	0.30	0.48	0.30	36.5
Approach	310	2.0	337	2.0	0.259	5.6	LOS A	1.4	35.8	0.30	0.48	0.30	36.5
West: NB I-5 Off-Ramp													
5 L2	5	0.0	5	0.0	0.073	11.5	LOS B	0.4	9.0	0.50	0.57	0.50	36.4
$2 \quad \mathrm{~T} 1$	45	2.0	49	2.0	0.073	5.7	LOS A	0.4	9.0	0.50	0.57	0.50	36.3
12 R 2	20	0.0	22	0.0	0.073	5.6	LOS A	0.4	9.0	0.50	0.57	0.50	35.2
Approach	70	1.3	76	1.3	0.073	6.1	LOS A	0.4	9.0	0.50	0.57	0.50	36.0
All Vehicles	805	1.7	875	1.7	0.259	5.8	LOS A	1.4	35.8	0.32	0.50	0.32	36.2

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Thursday, June 30, 2022 10:14:36 AM
Project: N:|Projects\0994 Gibbs \& Olson\22-000124 Segale Property\03-Analysis\Operations\I-5 NB Ramps-SR 432 Ramps.sip9

	\rangle						4	\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「	\% ${ }^{*}$	\uparrow		\%	\uparrow			个 ${ }^{\text {a }}$	
Traffic Volume (vph)	5	0	180	465	15	90	55	310	0	0	355	55
Future Volume (vph)	5	0	180	465	15	90	55	310	0	0	355	55
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0		75	550		625	275		0	0		0
Storage Lanes	1		1	2		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		318			873			684			482	
Travel Time (s)		7.2			19.8			15.5			11.0	
Turn Type	Prot		Perm	Prot	NA		Prot	NA			NA	
Protected Phases	5			1	6		3	8			4	
Permitted Phases			5									
Detector Phase	5		5	1	6		3	8			4	
Switch Phase												
Minimum Initial (s)	5.0		5.0	7.0	5.0		5.0	5.0			5.0	
Minimum Split (s)	10.0		10.0	13.0	11.0		10.5	10.5			10.5	
Total Split (s)	10.0		10.0	24.0	14.0		11.0	26.0			15.0	
Total Split (\%)	20.0\%		20.0\%	48.0\%	28.0\%		22.0\%	52.0\%			30.0\%	
Maximum Green (s)	5.0		5.0	18.0	8.0		5.5	20.5			9.5	
Yellow Time (s)	3.0		3.0	4.0	4.0		3.5	3.5			3.5	
All-Red Time (s)	2.0		2.0	2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	5.0		5.0	6.0	6.0		5.5	5.5			5.5	
Lead/Lag	Lead		Lead		Lag		Lead				Lag	
Lead-Lag Optimize?	Yes		Yes		Yes		Yes				Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0		3.0	3.0			3.0	
Recall Mode	None		None	None	None		None	Min			Min	
Intersection Summary												
Area Type: Other												
Cycle Length: 50												
Actuated Cycle Length: 41.4												
Natural Cycle: 55												
Control Type: Actuated-Uncoordinated												

Splits and Phases: 1: 3rd Ave \& Tennant Way/SR 432 WB Off Ramp

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%		F	7*	$\hat{\dagger}$		${ }^{7}$	\uparrow			蚛	
Traffic Volume (veh/h)	5	0	180	465	15	90	55	310	0	0	355	55
Future Volume (veh/h)	5	0	180	465	15	90	55	310	0	0	355	55
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1559	0	1750	1600	1750	1695	1723	1695	0	0	1695	1668
Adj Flow Rate, veh/h	6	0	6	528	17	102	62	352	0	0	403	62
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, \%	14	0	0	11	0	4	2	4	0	0	4	6
Cap, veh/h	12	0	0	753	29	174	104	707	0	0	578	88
Arrive On Green	0.01	0.00	0.00	0.25	0.13	0.13	0.06	0.42	0.00	0.00	0.21	0.21
Sat Flow, veh/h	1485	6		2956	217	1300	1641	1695	0	0	2886	428
Grp Volume(v), veh/h	6	47.2		528	0	119	62	352	0	0	230	235
Grp Sat Flow(s),veh/h/ln	1485	D		1478	0	1516	1641	1695	0	0	1611	1618
Q Serve(g_s), s	0.2			6.1	0.0	2.8	1.4	5.7	0.0	0.0	5.0	5.0
Cycle Q Clear(g_c), s	0.2			6.1	0.0	2.8	1.4	5.7	0.0	0.0	5.0	5.0
Prop In Lane	1.00			1.00		0.86	1.00		0.00	0.00		0.26
Lane Grp Cap (c), veh/h	12			753	0	203	104	707	0	0	332	334
V/C Ratio(X)	0.50			0.70	0.00	0.59	0.60	0.50	0.00	0.00	0.69	0.70
Avail Cap(c_a), veh/h	199			1423	0	324	241	930	0	0	409	411
HCM Platoon Ratio	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00			1.00	0.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh	18.5			12.6	0.0	15.2	17.0	8.0	0.0	0.0	13.7	13.8
Incr Delay (d2), s/veh	28.8			1.2	0.0	2.7	5.3	0.5	0.0	0.0	3.8	4.0
Initial Q Delay(d3),s/veh	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.1			1.7	0.0	0.9	0.6	1.5	0.0	0.0	1.8	1.8
Unsig. Movement Delay, s/veh												
LnGrp Delay (d),s/veh	47.2			13.8	0.0	17.9	22.4	8.6	0.0	0.0	17.5	17.8
LnGrp LOS	D			B	A	B	C	A	A	A	B	B
Approach Vol, veh/h					647			414			465	
Approach Delay, s/veh					14.6			10.6			17.7	
Approach LOS					B			B			B	

Timer - Assigned Phs	1	3	4	5	6	8
Phs Duration $(G+Y+R c)$, s	15.5	7.9	13.2	5.3	11.0	21.1
Change Period $(\mathrm{Y}+\mathrm{Rc})$, s	6.0	5.5	5.5	5.0	6.0	5.5
Max Green Setting (Gmax), s	18.0	5.5	9.5	5.0	8.0	20.5
Max Q Clear Time (g_c+11), s	8.1	3.4	7.0	2.2	4.8	7.7
Green Ext Time (p_c), s	1.5	0.0	0.7	0.0	0.2	1.7

Intersection Summary

HCM 6th Ctrl Delay 14.6

HCM 6th LOS B

Intersection						
Int Delay, s/veh	2.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	MF			个	怍	
Traffic Vol, veh/h	55	10	0	305	770	230
Future Vol, veh/h	55	10	0	305	770	230
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	0	0	4	8	3
Mvmt Flow	65	12	0	359	906	271

Intersection						
Int Delay, s/veh	5.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{7}$		$\mathbf{- 1 4}$
Traffic Vol, veh/h	55	145	140	25	190	175
Future Vol, veh/h	55	145	140	25	190	175
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	0	-	0	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	83	83	83	83	83	83
Heavy Vehicles, \%	5	32	18	0	9	4
Mvmt Flow	66	175	169	30	229	211

Major/Minor	Minor1		Major1		Major2		
Conflicting Flow All	733	169	0	0	199	0	
Stage 1	169	-	-	-	-	-	
Stage 2	564	-	-	-	-	-	
Critical Hdwy	6.675	6.68	-	-	4.235	-	
Critical Hdwy Stg 1	5.475		-	-	-	-	
Critical Hdwy Stg 2	5.875	-	-	-	-	-	
Follow-up Hdwy	3.5475	3.604	-		2.2855	-	
Pot Cap-1 Maneuver	366	794	-	-	1327	-	
Stage 1	852	-	-	-	-	-	
Stage 2	527	-	-	-	-	-	
Platoon blocked, \%			-	-		-	
Mov Cap-1 Maneuver	295	794	-	-	1327	-	
Mov Cap-2 Maneuver	295	-	-	-	-	-	
Stage 1	852	-	-	-	-	-	
Stage 2	424	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	13.5		0		4.5		
HCM LOS	B						
Minor Lane/Major Mvmt		NBT	NBRWBLn1WBLn2			SBL	SBT
Capacity (veh/h)		-	-	295	794	1327	-
HCM Lane V/C Ratio		-	-	0.225	0.22	0.173	-
HCM Control Delay (s)		-	-	20.7	10.8	8.3	0.3
HCM Lane LOS		-	-	C	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.8	0.8	0.6	-

4: I-5/SR 432 Ramps \& Coweeman Park Dr Performance by movement

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Denied Del/Veh (s)	0.1	0.0	4.1	0.2	0.2	3.6	0.4
Total Del/Veh (s)	4.5	1.4	4.8	5.4	0.3	0.7	2.0

MOVEMENT SUMMARY

∇ Site: 6 [Projected 2024 Without Project (Site Folder: General)]

I-5 NB Ramps/SR 432 Ramps at Old Pacific Hwy
PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance													
Mov Turn ID		INPUT VOLUMES	DEMAND FLOWS		Deg. Satn v/c \qquad	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE [Veh. Dist] veh ft		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: NB Old Pacific Hwy													
8 T1	170	1.0	185	1.0	0.242	4.3	LOS A	1.3	31.9	0.29	0.45	0.29	37.2
18 R2	120	3.0	130	3.0	0.242	4.4	LOS A	1.3	31.9	0.29	0.45	0.29	36.0
Approach	290	1.8	315	1.8	0.242	4.4	LOS A	1.3	31.9	0.29	0.45	0.29	36.7
East: WB Kelso Dr													
1 L2	110	1.0	120	1.0	0.126	10.5	LOS B	0.6	15.2	0.33	0.62	0.33	35.0
16 R2	35	0.0	38	0.0	0.126	4.6	LOS A	0.6	15.2	0.33	0.62	0.33	33.9
Approach	145	0.8	158	0.8	0.126	9.0	LOS A	0.6	15.2	0.33	0.62	0.33	34.7
North: SB SR 432 Ramps													
7 L2	65	2.0	71	2.0	0.263	10.3	LOS B	1.4	36.6	0.30	0.48	0.30	36.6
$4 \quad \mathrm{~T} 1$	250	2.0	272	2.0	0.263	4.3	LOS A	1.4	36.6	0.30	0.48	0.30	36.5
Approach	315	2.0	342	2.0	0.263	5.6	LOS A	1.4	36.6	0.30	0.48	0.30	36.5
West: NB I-5 Off-Ramp													
5 L2	5	0.0	5	0.0	0.073	11.6	LOS B	0.4	9.1	0.50	0.57	0.50	36.4
$2 \quad \mathrm{~T} 1$	45	2.0	49	2.0	0.073	5.7	LOS A	0.4	9.1	0.50	0.57	0.50	36.3
12 R 2	20	0.0	22	0.0	0.073	5.7	LOS A	0.4	9.1	0.50	0.57	0.50	35.2
Approach	70	1.3	76	1.3	0.073	6.1	LOS A	0.4	9.1	0.50	0.57	0.50	36.0
All Vehicles	820	1.7	891	1.7	0.263	5.8	LOS A	1.4	36.6	0.32	0.50	0.32	36.2

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Thursday, June 30, 2022 10:14:38 AM
Project: N:\Projects\0994 Gibbs \& Olson\22-000124 Segale Property\03-Analysis\Operations\I-5 NB Ramps-SR 432 Ramps.sip9

	\rangle						4	\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%		F	\% ${ }^{\text {\% }}$	\uparrow		7	\uparrow			中 ${ }^{\text {a }}$	
Traffic Volume (vph)	5	0	215	540	15	130	55	310	0	0	380	55
Future Volume (vph)	5	0	215	540	15	130	55	310	0	0	380	55
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0		75	550		625	275		0	0		0
Storage Lanes	1		1	2		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		318			873			684			482	
Travel Time (s)		7.2			19.8			15.5			11.0	
Turn Type	Prot		Perm	Prot	NA		Prot	NA			NA	
Protected Phases	5			1	6		3	8			4	
Permitted Phases			5									
Detector Phase	5		5	1	6		3	8			4	
Switch Phase												
Minimum Initial (s)	5.0		5.0	7.0	5.0		5.0	5.0			5.0	
Minimum Split (s)	10.0		10.0	13.0	11.0		10.5	10.5			10.5	
Total Split (s)	10.0		10.0	24.0	14.0		11.0	26.0			15.0	
Total Split (\%)	20.0\%		20.0\%	48.0\%	28.0\%		22.0\%	52.0\%			30.0\%	
Maximum Green (s)	5.0		5.0	18.0	8.0		5.5	20.5			9.5	
Yellow Time (s)	3.0		3.0	4.0	4.0		3.5	3.5			3.5	
All-Red Time (s)	2.0		2.0	2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	5.0		5.0	6.0	6.0		5.5	5.5			5.5	
Lead/Lag	Lead		Lead		Lag		Lead				Lag	
Lead-Lag Optimize?	Yes		Yes		Yes		Yes				Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0		3.0	3.0			3.0	
Recall Mode	None		None	None	None		None	Min			Min	
Intersection Summary												
Area Type: Other												
Cycle Length: 50												
Actuated Cycle Length: 42.8												
Natural Cycle: 50												
Control Type: Actuated-Uncoordinated												

Splits and Phases: 1: 3rd Ave \& Tennant Way/SR 432 WB Off Ramp

| | | | | | | | | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Intersection						
Int Delay, s/veh	2.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			个	怍	
Traffic Vol, veh/h	55	10	0	305	845	290
Future Vol, veh/h	55	10	0	305	845	290
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	0	0	4	8	3
Mvmt Flow	65	12	0	359	994	341

Splits and Phases: 3: Talley Way \& Coweeman Park Dr

4: I-5/SR 432 Ramps \& Coweeman Park Dr Performance by movement

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Denied Del/Veh (s)	0.1	0.0	4.1	0.2	0.6	3.4	0.4
Total Del/Veh (s)	10.5	3.7	11.7	10.9	1.1	1.0	3.3

	\dagger			+		\downarrow
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	${ }^{*}{ }^{*}$	\%	\uparrow	F	\%	¢ \uparrow
Traffic Volume (vph)	250	165	465	565	225	410
Future Volume (vph)	250	165	465	565	225	410
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	350	0		0	400	
Storage Lanes	2	1		1	1	
Taper Length (tt)	25				25	
Right Turn on Red		Yes		Yes		
Link Speed (mph)	30		25			30
Link Distance (ft)	557		460			855
Travel Time (s)	12.7		12.5			19.4
Turn Type	Prot	Perm	NA	Perm	Prot	NA
Protected Phases	8		2		1	6
Permitted Phases		8		2		
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	9.5	22.5
Total Split (s)	22.5	22.5	29.5	29.5	18.0	47.5
Total Split (\%)	32.1\%	32.1\%	42.1\%	42.1\%	25.7\%	67.9\%
Maximum Green (s)	18.0	18.0	25.0	25.0	13.5	43.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	Min
Walk Time (s)	7.0	7.0	7.0	7.0		7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0		11.0
Pedestrian Calls (\#/hr)	0	0	0	0		0
Intersection Summary						
Area Type: Other						
Cycle Length: 70						
Actuated Cycle Length: 60.2						
Natural Cycle: 70Control Type: Actuated-Uncoordinated						

Splits and Phases: 5: Site Driveway/Talley Way \& I-5/SR 432 Ramps

MOVEMENT SUMMARY

\forall Site: 6 [Projected 2024 With Project (Site Folder: General)]

I-5 NB Ramps/SR 432 Ramps at Old Pacific Hwy
PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance													
$\begin{aligned} & \text { Mov Turn } \\ & \text { ID } \end{aligned}$	$\begin{array}{r} \text { INF } \\ \text { VOLL } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { JT } \\ & \text { MES } \\ & \text { HV] } \\ & \% \end{aligned}$	$\begin{array}{r} \text { DEM } \\ \text { FLC } \\ \text { [Total } \\ \text { veh/h } \end{array}$	$\begin{aligned} & \text { IND } \\ & \text { NS } \\ & \text { HV] } \\ & \% \\ & \hline \end{aligned}$	Deg. Satn v/c	Aver. Delay sec	Level of Service		$\begin{aligned} & \text { CK OF } \\ & \text { UE } \\ & \text { Dist] } \\ & \text { ft } \end{aligned}$	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: NB Old Pacific Hwy													
8 T1	215	1.0	234	1.0	0.346	5.9	LOS A	2.1	53.3	0.59	0.62	0.59	36.2
18 R2	120	3.0	130	3.0	0.346	6.1	LOS A	2.1	53.3	0.59	0.62	0.59	35.0
Approach	335	1.7	364	1.7	0.346	6.0	LOS A	2.1	53.3	0.59	0.62	0.59	35.8
East: WB Kelso Dr													
1 L2	110	1.0	120	1.0	0.133	10.7	LOS B	0.7	17.5	0.40	0.63	0.40	34.8
16 R2	35	0.0	38	0.0	0.133	4.8	LOS A	0.7	17.5	0.40	0.63	0.40	33.7
Approach	145	0.8	158	0.8	0.133	9.2	LOS A	0.7	17.5	0.40	0.63	0.40	34.5
North: SB SR 432 Ramps													
7 L2	335	2.0	364	2.0	0.553	10.6	LOS B	4.4	112.6	0.43	0.57	0.43	35.4
$4 \quad \mathrm{~T} 1$	325	2.0	353	2.0	0.553	4.6	LOS A	4.4	112.6	0.43	0.57	0.43	35.3
Approach	660	2.0	717	2.0	0.553	7.7	LOS A	4.4	112.6	0.43	0.57	0.43	35.4
West: NB I-5 Off-Ramp													
5 L2	5	0.0	5	0.0	0.103	14.3	LOS B	0.6	16.0	0.74	0.73	0.74	35.3
$2 \quad \mathrm{~T} 1$	45	2.0	49	2.0	0.103	8.5	LOS A	0.6	16.0	0.74	0.73	0.74	35.2
12 R 2	20	0.0	22	0.0	0.103	8.4	LOS A	0.6	16.0	0.74	0.73	0.74	34.2
Approach	70	1.3	76	1.3	0.103	8.9	LOS A	0.6	16.0	0.74	0.73	0.74	34.9
All Vehicles	1210	1.7	1315	1.7	0.553	7.5	LOS A	4.4	112.6	0.49	0.60	0.49	35.3

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Thursday, June 30, 2022 10:14:39 AM
Project: N:\Projects\0994 Gibbs \& Olson\22-000124 Segale Property\03-Analysis\Operations\I-5 NB Ramps-SR 432 Ramps.sip9

	\rangle			\checkmark			4	\uparrow			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%		「	\% ${ }^{1+1}$	$\hat{\dagger}$		\%	\uparrow			中 ${ }^{\text {a }}$	
Traffic Volume (vph)	5	0	190	490	15	95	55	325	0	0	370	60
Future Volume (vph)	5	0	190	490	15	95	55	325	0	0	370	60
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0		75	550		625	275		0	0		0
Storage Lanes	1		1	2		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		318			873			684			482	
Travel Time (s)		7.2			19.8			15.5			11.0	
Turn Type	Prot		Perm	Prot	NA		Prot	NA			NA	
Protected Phases	5			1	6		3	8			4	
Permitted Phases			5									
Detector Phase	5		5	1	6		3	8			4	
Switch Phase												
Minimum Initial (s)	5.0		5.0	7.0	5.0		5.0	5.0			5.0	
Minimum Split (s)	10.0		10.0	13.0	11.0		10.5	10.5			10.5	
Total Split (s)	10.0		10.0	24.0	14.0		11.0	26.0			15.0	
Total Split (\%)	20.0\%		20.0\%	48.0\%	28.0\%		22.0\%	52.0\%			30.0\%	
Maximum Green (s)	5.0		5.0	18.0	8.0		5.5	20.5			9.5	
Yellow Time (s)	3.0		3.0	4.0	4.0		3.5	3.5			3.5	
All-Red Time (s)	2.0		2.0	2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	5.0		5.0	6.0	6.0		5.5	5.5			5.5	
Lead/Lag	Lead		Lead		Lag		Lead				Lag	
Lead-Lag Optimize?	Yes		Yes		Yes		Yes				Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0		3.0	3.0			3.0	
Recall Mode	None		None	None	None		None	Min			Min	
Intersection Summary												
Area Type: Other												
Cycle Length: 50												
Actuated Cycle Length: 42.7												
Natural Cycle: 50												
Control Type: Actuated-Uncoordinated												

Splits and Phases: 1: 3rd Ave \& Tennant Way/SR 432 WB Off Ramp

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％		「	${ }^{7} 1$	$\hat{\beta}$		\％	个			性	
Traffic Volume（veh／h）	5	0	190	490	15	95	55	325	0	0	370	60
Future Volume（veh／h）	5	0	190	490	15	95	55	325	0	0	370	60
Initial $Q(Q b)$ ，veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped－Bike Adj（A＿pbT）	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus，Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow，veh／h／ln	1559	0	1750	1600	1750	1695	1723	1695	0	0	1695	1668
Adj Flow Rate，veh／h	8	0	11	557	17	108	62	369	0	0	420	68
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh，\％	14	0	0	11	0	4	2	4	0	0	4	6
Cap，veh／h	12	0	0	782	28	176	104	713	0	0	587	94
Arrive On Green	0.01	0.00	0.00	0.26	0.13	0.13	0.06	0.42	0.00	0.00	0.21	0.21
Sat Flow，veh／h	1485	6		2956	206	1309	1641	1695	0	0	2864	447
Grp Volume（v），veh／h	6	47.5		557	0	125	62	369	0	0	242	246
Grp Sat Flow（s），veh／h／n	1485	D		1478	0	1514	1641	1695	0	0	1611	1615
Q Serve（g＿s），s	0.2			6.5	0.0	2.9	1.4	6.1	0.0	0.0	5.3	5.3
Cycle Q Clear（g＿c），s	0.2			6.5	0.0	2.9	1.4	6.1	0.0	0.0	5.3	5.3
Prop In Lane	1.00			1.00		0.86	1.00		0.00	0.00		0.28
Lane Grp Cap（c），veh／h	12			782	0	204	104	713	0	0	341	341
V／C Ratio（X）	0.50			0.71	0.00	0.61	0.60	0.52	0.00	0.00	0.71	0.72
Avail Cap（c＿a），veh／h	197			1409	0	321	239	920	0	0	405	406
HCM Platoon Ratio	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter（l）	1.00			1.00	0.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00
Uniform Delay（d），s／veh	18.7			12.6	0.0	15.4	17.2	8.1	0.0	0.0	13.8	13.9
Incr Delay（d2），s／veh	28.8			1.2	0.0	3.0	5.4	0.6	0.0	0.0	4.7	5.0
Initial Q Delay（d3），s／veh	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\％ile BackOfQ（50\％），veh／In	0.1			1.8	0.0	1.0	0.6	1.6	0.0	0.0	2.0	2.0
Unsig．Movement Delay，s／veh												
LnGrp Delay（d），s／veh	47.5			13.8	0.0	18.4	22.6	8.7	0.0	0.0	18.5	18.8
LnGrp LOS	D			B	A	B	C	A	A	A	B	B
Approach Vol，veh／h					682			431			488	
Approach Delay，s／veh					14.6			10.7			18.6	
Approach LOS					B			B			B	

Timer－Assigned Phs	1	3	4	5	6	8
Phs Duration $(G+Y+R c)$ ，s	16.0	7.9	13.5	5.3	11.1	21.4
Change Period $(\mathrm{Y}+\mathrm{Rc})$ ， \mathbf{s}	6.0	5.5	5.5	5.0	6.0	5.5
Max Green Setting（Gmax），s	18.0	5.5	9.5	5.0	8.0	20.5
Max Q Clear Time（g＿c＋11），s	8.5	3.4	7.3	2.2	4.9	8.1
Green Ext Time（p＿c），s	1.6	0.0	0.6	0.0	0.2	1.8

Intersection Summary

HCM 6th Ctrl Delay 14.9

HCM 6th LOS B

Intersection						
Int Delay, s/veh	2.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	MF			个	怍	
Traffic Vol, veh/h	60	10	0	320	810	245
Future Vol, veh/h	60	10	0	320	810	245
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	0	0	4	8	3
Mvmt Flow	71	12	0	376	953	288

Major/Minor	Minor1	Major1		Major2		
Conflicting Flow All	757	175	0	0	205	0
\quad Stage 1	175	-	-	-	-	-
Stage 2	582	-	-	-	-	-
Critical Hdwy	6.675	6.68	-	-4.235	-	
Critical Hdwy Stg 1	5.475	-	-	-	-	-
Critical Hdwy Stg 2	5.875	-	-	-	-	-
Follow-up Hdwy	3.5475	3.604	-	-2.2855	-	
Pot Cap-1 Maneuver	354	787	-	-1320	-	
\quad Stage 1	847	-	-	-	-	-
\quad Stage 2	516	-	-	-	-	-
Platoon blocked, \%			-	-		
Mov Cap-1 Maneuver	282	787	-	-1320	-	
Mov Cap-2 Maneuver	282	-	-	-	-	-
Stage 1	847	-	-	-	-	-
Stage 2	411	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	14.1	0	4.4
HCM LOS	B		

Minor Lane/Major Mvmt	NBT	NBRWBLn1WBLn2	SBL	SBT	
Capacity (veh/h)	-	-	282	787	1320

4: I-5/SR 432 Ramps \& Coweeman Park Dr Performance by movement

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Denied Del/Veh (s)	0.4	0.0	4.0	0.2	0.3	3.6	0.5
Total Del/Veh (s)	4.9	1.4	5.6	6.1	0.4	0.7	2.2

MOVEMENT SUMMARY

∇ Site: 6 [Projected 2029 Without Project (Site Folder: General)]

I-5 NB Ramps/SR 432 Ramps at Old Pacific Hwy
PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance													
Mov Turn ID	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c \qquad	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE [Veh. Dist] veh ft		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: NB Old Pacific Hwy													
8 T1	180	1.0	196	1.0	0.256	4.4	LOS A	1.4	34.4	0.31	0.46	0.31	37.2
18 R2	125	3.0	136	3.0	0.256	4.5	LOS A	1.4	34.4	0.31	0.46	0.31	35.9
Approach	305	1.8	332	1.8	0.256	4.4	LOS A	1.4	34.4	0.31	0.46	0.31	36.6
East: WB Kelso Dr													
1 L2	115	1.0	125	1.0	0.132	10.5	LOS B	0.6	16.1	0.34	0.62	0.34	34.9
16 R2	35	0.0	38	0.0	0.132	4.6	LOS A	0.6	16.1	0.34	0.62	0.34	33.8
Approach	150	0.8	163	0.8	0.132	9.1	LOS A	0.6	16.1	0.34	0.62	0.34	34.6
North: SB SR 432 Ramps													
7 L2	70	2.0	76	2.0	0.281	10.3	LOS B	1.6	40.0	0.31	0.49	0.31	36.5
$4 \quad \mathrm{~T} 1$	265	2.0	288	2.0	0.281	4.4	LOS A	1.6	40.0	0.31	0.49	0.31	36.5
Approach	335	2.0	364	2.0	0.281	5.6	LOS A	1.6	40.0	0.31	0.49	0.31	36.5
West: NB I-5 Off-Ramp													
5 L2	5	0.0	5	0.0	0.080	11.7	LOS B	0.4	10.1	0.52	0.58	0.52	36.4
$2 \quad \mathrm{~T} 1$	50	2.0	54	2.0	0.080	5.8	LOS A	0.4	10.1	0.52	0.58	0.52	36.2
12 R 2	20	0.0	22	0.0	0.080	5.8	LOS A	0.4	10.1	0.52	0.58	0.52	35.1
Approach	75	1.3	82	1.3	0.080	6.2	LOS A	0.4	10.1	0.52	0.58	0.52	35.9
All Vehicles	865	1.7	940	1.7	0.281	5.9	LOS A	1.6	40.0	0.33	0.51	0.33	36.1

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Thursday, June 30, 2022 10:14:40 AM
Project: N:\Projects\0994 Gibbs \& Olson\22-000124 Segale Property\03-Analysis\Operations\I-5 NB Ramps-SR 432 Ramps.sip9

	\rangle						4	\dagger			\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「	\% ${ }^{\text {\% }}$	\uparrow		\%	\uparrow			个 ${ }^{\text {a }}$	
Traffic Volume (vph)	5	0	225	560	15	135	55	325	0	0	395	60
Future Volume (vph)	5	0	225	560	15	135	55	325	0	0	395	60
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750	1750
Storage Length (ft)	0		75	550		625	275		0	0		0
Storage Lanes	1		1	2		0	1		0	0		0
Taper Length (ft)	25			25			25			25		
Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		318			873			684			482	
Travel Time (s)		7.2			19.8			15.5			11.0	
Turn Type	Prot		Perm	Prot	NA		Prot	NA			NA	
Protected Phases	5			1	6		3	8			4	
Permitted Phases			5									
Detector Phase	5		5	1	6		3	8			4	
Switch Phase												
Minimum Initial (s)	5.0		5.0	7.0	5.0		5.0	5.0			5.0	
Minimum Split (s)	10.0		10.0	13.0	11.0		10.5	10.5			10.5	
Total Split (s)	10.0		10.0	24.0	14.0		11.0	26.0			15.0	
Total Split (\%)	20.0\%		20.0\%	48.0\%	28.0\%		22.0\%	52.0\%			30.0\%	
Maximum Green (s)	5.0		5.0	18.0	8.0		5.5	20.5			9.5	
Yellow Time (s)	3.0		3.0	4.0	4.0		3.5	3.5			3.5	
All-Red Time (s)	2.0		2.0	2.0	2.0		2.0	2.0			2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)	5.0		5.0	6.0	6.0		5.5	5.5			5.5	
Lead/Lag	Lead		Lead		Lag		Lead				Lag	
Lead-Lag Optimize?	Yes		Yes		Yes		Yes				Yes	
Vehicle Extension (s)	3.0		3.0	3.0	3.0		3.0	3.0			3.0	
Recall Mode	None		None	None	None		None	Min			Min	
Intersection Summary												
Area Type: Other												
Cycle Length: 50												
Actuated Cycle Length: 43												
Natural Cycle: 50												
Control Type: Actuated-Uncoordinated												

Splits and Phases: 1: 3rd Ave \& Tennant Way/SR 432 WB Off Ramp

	\rangle			7			4	4			\dagger	\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$		「	\% ${ }^{1 / 1}$	\uparrow		${ }_{7}$	\uparrow			性	
Traffic Volume (veh/h)	5	0	225	560	15	135	55	325	0	0	395	60
Future Volume (veh/h)	5	0	225	560	15	135	55	325	0	0	395	60
Initial $Q(Q b)$, veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1559	0	1750	1600	1750	1695	1723	1695	0	0	1695	1668
Adj Flow Rate, veh/h	6	0	0	636	17	153	62	369	0	0	449	68
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, \%	14	0	0	11	0	4	2	4	0	0	4	6
Cap, veh/h	12	0	0	852	24	218	102	703	0	0	600	90
Arrive On Green	0.01	0.00	0.00	0.29	0.16	0.16	0.06	0.41	0.00	0.00	0.21	0.21
Sat Flow, veh/h	1485	6		2956	151	1355	1641	1695	,	0	2892	423
Grp Volume(v), veh/h	6	48.5		636	0	170	62	369	0	0	257	260
Grp Sat Flow(s),veh/h/ln	1485	D		1478	0	1506	1641	1695	0	0	1611	1619
Q Serve(g_s), s	0.2			7.7	0.0	4.2	1.5	6.5	0.0	0.0	5.9	6.0
Cycle Q Clear(g_c), s	0.2			7.7	0.0	4.2	1.5	6.5	0.0	0.0	5.9	6.0
Prop In Lane	1.00			1.00		0.90	1.00		0.00	0.00		0.26
Lane Grp Cap (c), veh/h	12			852	0	242	102	703	0	0	344	346
V/C Ratio(X)	0.50			0.75	0.00	0.70	0.61	0.52	0.00	0.00	0.75	0.75
Avail Cap(c_a), veh/h	187			1342	0	304	228	877	0	0	386	388
HCM Platoon Ratio	1.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(1)	1.00			1.00	0.00	1.00	1.00	1.00	0.00	0.00	1.00	1.00
Uniform Delay (d), s/veh	19.6			12.8	0.0	15.7	18.1	8.7	0.0	0.0	14.6	14.6
Incr Delay (d2), s/veh	28.9			1.3	0.0	5.2	5.7	0.6	0.0	0.0	6.8	7.2
Initial Q Delay(d3),s/veh	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile BackOfQ(50\%),veh/ln	0.1			2.2	0.0	1.6	0.6	1.8	0.0	0.0	2.4	2.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	48.5			14.1	0.0	20.9	23.8	9.3	0.0	0.0	21.4	21.8
LnGrp LOS	D			B	A	C	C	A	A	A	C	C
Approach Vol, veh/h					806			431			517	
Approach Delay, s/veh					15.6			11.4			21.6	
Approach LOS					B			B			C	
Timer - Assigned Phs	1		3	4	5	6		8				
Phs Duration ($\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$), s	17.4		8.0	14.0	5.3	12.4		21.9				
Change Period ($\mathrm{Y}+\mathrm{Rc}$), s	6.0		5.5	5.5	5.0	6.0		5.5				
Max Green Setting (Gmax), s	18.0		5.5	9.5	5.0	8.0		20.5				
Max Q Clear Time (g_c+11), s	9.7		3.5	8.0	2.2	6.2		8.5				
Green Ext Time (p_c), s	1.7		0.0	0.5	0.0	0.1		1.7				
Intersection Summary												
HCM 6th Ctrr DelayHCM 6th LOS			16.4									
			B									

Intersection						
Int Delay, s/veh	3.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			个	个	
Traffic Vol, veh/h	60	10	0	320	880	300
Future Vol, veh/h	60	10	0	320	880	300
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	0	0	4	8	3
Mvmt Flow	71	12	0	376	1035	353

					(
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	17	「	4	「		44
Traffic Volume (vph)	420	150	215	420	195	230
Future Volume (vph)	420	150	215	420	195	230
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	300	0		0	0	
Storage Lanes	2	1		1	0	
Taper Length (ft)	25				25	
Right Turn on Red		Yes		Yes		
Link Speed (mph)	25		25			25
Link Distance (ft)	671		855			251
Travel Time (s)	18.3		23.3			6.8
Turn Type	Prot	Perm	NA	Perm	Perm	NA
Protected Phases	8		2			6
Permitted Phases		8		2	6	
Detector Phase	8	8	2	2	6	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (s)	22.5	22.5	22.5	22.5	22.5	22.5
Total Split (\%)	50.0\%	50.0\%	50.0\%	50.0\%	50.0\%	50.0\%
Maximum Green (s)	18.0	18.0	18.0	18.0	18.0	18.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0		0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5		4.5
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	Min	Min
Walk Time (s)	7.0	7.0	7.0	7.0	7.0	7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0	11.0	11.0
Pedestrian Calls (\#/hr)	0	0	0	0	0	0
Intersection Summary						
Area Type:	her					
Cycle Length: 45						
Actuated Cycle Length:						
Natural Cycle: 45						
Control Type: Actuated	rdinated					
Splits and Phases: 3: Talley Way \& Coweeman Park Dr						
T_{02}					¢ 10	
22.5 s						
$\frac{1}{\square 6}$						
22.5 s					22.5 s	

4: I-5/SR 432 Ramps \& Coweeman Park Dr Performance by movement

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Denied Del/Veh (s)	0.0	0.0	4.0	0.3	0.6	3.3	0.4
Total Del/Veh (s)	13.1	4.2	11.8	12.4	1.1	1.1	3.8

	7					\dagger
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	71	「	4	F	${ }^{7}$	44
Traffic Volume (vph)	250	170	465	565	240	410
Future Volume (vph)	250	170	465	565	240	410
Ideal Flow (vphpl)	1750	1750	1750	1750	1750	1750
Storage Length (ft)	350	0		0	400	
Storage Lanes	2	1		1	1	
Taper Length (ft)	25				25	
Right Turn on Red		Yes		Yes		
Link Speed (mph)	30		25			30
Link Distance (ft)	557		460			855
Travel Time (s)	12.7		12.5			19.4
Turn Type	Prot	Perm	NA	Perm	Prot	NA
Protected Phases	8		2		1	6
Permitted Phases		8		2		
Detector Phase	8	8	2	2	1	6
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	22.5	22.5	22.5	22.5	9.5	22.5
Total Split (s)	22.5	22.5	28.5	28.5	19.0	47.5
Total Split (\%)	32.1\%	32.1\%	40.7\%	40.7\%	27.1\%	67.9\%
Maximum Green (s)	18.0	18.0	24.0	24.0	14.5	43.0
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	4.5	4.5	4.5	4.5	4.5	4.5
Lead/Lag			Lag	Lag	Lead	
Lead-Lag Optimize?			Yes	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	Min
Walk Time (s)	7.0	7.0	7.0	7.0		7.0
Flash Dont Walk (s)	11.0	11.0	11.0	11.0		11.0
Pedestrian Calls (\#/hr)	0	0	0	0		0
Intersection Summary						
Area Type: Other						
Cycle Length: 70						
Actuated Cycle Length: 60.6						
Natural Cycle: 75						
Control Type: Actuated-Uncoordinated						

Splits and Phases: 5: Site Driveway/Talley Way \& I-5/SR 432 Ramps

MOVEMENT SUMMARY

Q Site: 6 [Projected 2029 With Project (Site Folder: General)]

I-5 NB Ramps/SR 432 Ramps at Old Pacific Hwy
PM Peak Hour
Site Category: (None)
Roundabout

Vehicle Movement Performance													
Mov Turn ID	INPUT VOLUMES		DEMAND FLOWS		Deg. Satn v/c \qquad	Aver. Delay sec	Level of Service	95\% BACK OF QUEUE [Veh. Dist] veh ft		Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
South: NB Old Pacific Hwy													
8 T1	225	1.0	245	1.0	0.363	6.0	LOSA	2.2	56.9	0.60	0.62	0.60	36.2
18 R2	125	3.0	136	3.0	0.363	6.1	LOS A	2.2	56.9	0.60	0.62	0.60	35.0
Approach	350	1.7	380	1.7	0.363	6.0	LOS A	2.2	56.9	0.60	0.62	0.60	35.7
East: WB Kelso Dr													
1 L2	115	1.0	125	1.0	0.139	10.7	LOS B	0.7	18.5	0.41	0.64	0.41	34.7
16 R2	35	0.0	38	0.0	0.139	4.8	LOS A	0.7	18.5	0.41	0.64	0.41	33.7
Approach	150	0.8	163	0.8	0.139	9.3	LOS A	0.7	18.5	0.41	0.64	0.41	34.5
North: SB SR 432 Ramps													
7 L2	335	2.0	364	2.0	0.564	10.6	LOS B	4.6	116.7	0.45	0.57	0.45	35.4
$4 \quad \mathrm{~T} 1$	335	2.0	364	2.0	0.564	4.7	LOS A	4.6	116.7	0.45	0.57	0.45	35.3
Approach	670	2.0	728	2.0	0.564	7.7	LOS A	4.6	116.7	0.45	0.57	0.45	35.3
West: NB I-5 Off-Ramp													
5 L2	5	0.0	5	0.0	0.113	14.5	LOS B	0.7	17.7	0.76	0.74	0.76	35.3
$2 \quad \mathrm{~T} 1$	50	2.0	54	2.0	0.113	8.7	LOS A	0.7	17.7	0.76	0.74	0.76	35.1
12 R 2	20	0.0	22	0.0	0.113	8.6	LOS A	0.7	17.7	0.76	0.74	0.76	34.1
Approach	75	1.3	82	1.3	0.113	9.1	LOS A	0.7	17.7	0.76	0.74	0.76	34.8
All Vehicles	1245	1.7	1353	1.7	0.564	7.5	LOS A	4.6	116.7	0.51	0.60	0.51	35.3

Site Level of Service (LOS) Method: Delay \& Degree of Saturation (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Site tab).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
Intersection and Approach LOS values are based on average delay for all movements (v / c not used).
Roundabout Capacity Model: SIDRA Standard.
Delay Model: SIDRA Standard (Geometric Delay is included).
Queue Model: HCM Queue Formula.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: SCJ ALLIANCE | Licence: PLUS / 1PC | Processed: Thursday, July 7, 2022 10:39:11 AM
Project: N:\Projects\0994 Gibbs \& Olson\22-000124 Segale Property\03-Analysis\Operations\I-5 NB Ramps-SR 432 Ramps.sip9

[^0]: $\mathrm{N}: \backslash$ Projects $\backslash 0994$ Gibbs \& Olson \22-000124 Segale Property $\backslash 04$-Deliverables $\backslash 03$-Traffic Scoping \backslash Letter $\backslash 2022-0505$ Kelso-Segale Warehouse Scoping Letter.docx

